6,484 research outputs found

    Coherent regimes of globally coupled dynamical systems

    Get PDF
    The paper presents a method by which the mean field dynamics of a population of dynamical systems with parameter diversity and global coupling can be described in terms of a few macroscopic degrees of freedom. The method applies to populations of any size and functional form in the region of coherence. It requires linear variation or a narrow distribution for the dispersed parameter. Although being an approximation, the method allows us to quantitatively study the collective regimes that arise as a result of diversity and coupling and to interpret the transitions among these regimes as bifurcations of the effective macroscopic degrees of freedom. To illustrate, the phenomenon of oscillator death and the route to full locking are examined for chaotic oscillators with time scale mismatch.Comment: 5 pages, 3 figure

    Exploiting limited valence patchy particles to understand autocatalytic kinetics

    Get PDF
    Autocatalysis, i.e., the speeding up of a reaction through the very same molecule which is produced, is common in chemistry, biophysics, and material science. Rate-equation-based approaches are often used to model the time dependence of products, but the key physical mechanisms behind the reaction cannot be properly recognized. Here, we develop a patchy particle model inspired by a bicomponent reactive mixture and endowed with adjustable autocatalytic ability. Such a coarse-grained model captures all general features of an autocatalytic aggregation process that takes place under controlled and realistic conditions, including crowded environments. Simulation reveals that a full understanding of the kinetics involves an unexpected effect that eludes the chemistry of the reaction, and which is crucially related to the presence of an activation barrier. The resulting analytical description can be exported to real systems, as confirmed by experimental data on epoxy-amine polymerizations, solving a long-standing issue in their mechanistic description

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Multi-scale theoretical approach to X-ray absorption spectra in disordered systems: an application to the study of Zn(II) in water

    Full text link
    We develop a multi-scale theoretical approach aimed at calculating from first principles X-ray absorption spectra of liquid solutions and disordered systems. We test the method by considering the paradigmatic case of Zn(II) in water which, besides being relevant in itself, is also of interest for biology. With the help of classical molecular dynamics simulations we start by producing bunches of configurations differing for the Zn(II)-water coordination mode. Different coordination modes are obtained by making use of the so-called dummy atoms method. From the collected molecular dynamics trajectories, snapshots of a more manageable subsystem encompassing the metal site and two solvation layers are cut out. Density functional theory is used to optimize and relax these reduced system configurations employing a uniform dielectric to mimic the surrounding bulk liquid water. On the resulting structures, fully quantum mechanical X-ray absorption spectra calculations are performed by including core-hole effects and core-level shifts. The proposed approach does not rely on any guessing or fitting of the force field or of the atomic positions of the system. The comparison of the theoretically computed spectrum with the experimental Zn K-edge XANES data unambiguously demonstrates that among the different a priori possible geometries, Zn(II) in water lives in an octahedral coordination mode.Comment: 8 pages, 3 figure

    A molecular dynamics study of chemical gelation in a patchy particle model

    Full text link
    We report event-driven molecular dynamics simulations of the irreversible gelation of hard ellipsoids of revolution containing several associating groups, characterizing how the cluster size distribution evolves as a function of the extent of reaction, both below and above the gel point. We find that in a very large interval of values of the extent of reaction, parameter-free mean-field predictions are extremely accurate, providing evidence that in this model the Ginzburg zone near the gel point, where non-mean field effects are important, is very limited. We also find that the Flory's hypothesis for the post-gelation regime properly describes the connectivity of the clusters even if the long-time limit of the extent of reaction does not reach the fully reacted state. This study shows that irreversibly aggregating asymmetric hard-core patchy particles may provide a close realization of the mean-field model, for which available theoretical predictions may help control the structure and the connectivity of the gel state. Besides chemical gels, the model is relevant to network-forming soft materials like systems with bioselective interactions, functionalized molecules and patchy colloids.Comment: 6 pages, 4 figures, to be published in Soft Matte

    Retinoic acid-induced differentiation sensitizes myeloid progenitors cells to ER stress

    Get PDF
    The clonal expansion of hematopoietic myeloid precursors blocked at different stages of differentiation characterizes the acute myeloid leukemia (AML) phenotype. A subtype of AML, acute promyelocytic leukemia (APL), characterized by the chimeric protein PML-RARα is considered a paradigm of differentiation therapy. In this leukemia subtype the all-trans-retinoic acid (RA)-based treatments are able to induce PML-RARα degradation and leukemic blast terminal differentiation [1-2]. Granulocytic differentiation of APL cells driven by RA triggers a physiological Unfolded Protein Response (UPR), a series of pathways emanating from the ER in case of ER stress, which ensues when higher protein folding activity is required as during differentiation. We show here that, although mild, the ER stress induced by RA is sufficient to render human APL cell lines and primary blasts very sensitive to low doses of Tunicamycin (Tm), an ER stress inducing drug, at doses that are not toxic in the absence of RA. Importantly only human progenitors cells derived from APL patients resulted sensitive to the combined treatment with RA and Tm whereas those obtained from healthy donors were not affected. We also show that the UPR pathway downstream of PERK plays a major protective role against ER stress in differentiating cells and, by using a specific PERK inhibitor, we potentiated the toxic effect of the combination of RA and Tm. In conclusion, our findings identify the ER stress-related pathways as potential targets in the search for novel therapeutic strategies in AML

    CMB Polarization Systematics, Cosmological Birefringence and the Gravitational Waves Background

    Full text link
    Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for \textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle α=−4.3∘±4.1∘\alpha=-4.3^\circ\pm4.1^\circ. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then 1∘1^\circ for Planck and 0.2∘0.2\circ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.Comment: 10 pages, 3 figure
    • …
    corecore